
Negative Selection Algorithm for
 Aircraft Fault Detection

D. Dasgupta1, K. KrishnaKumar2, D. Wong, M. Berry

1 Division of Computer Science, University of Memphis
Memphis, TN

2 Computational Sciences Division, NASA Ames Research Center
Moffett Field, CA

Abstract. We investigated a real-valued Negative Selection Algorithm
(NSA) for fault detection in man-in-the-loop aircraft operation. The de-
tection algorithm uses body-axes angular rate sensory data exhibiting
the normal flight behavior patterns, to generate probabilistically a set of
fault detectors that can detect any abnormalities (including faults and
damages) in the behavior pattern of the aircraft flight. We performed
experiments with datasets (collected under normal and various simu-
lated failure conditions) using the NASA Ames man-in-the-loop high-
fidelity C-17 flight simulator. The paper provides results of experi-
ments with different datasets representing various failure conditions.

1 Introduction

Early detection of a fault or damage of aircraft subsystems is very crucial for its con-
trol and maneuver during the flight [5, 15]. These events include sudden loss of con-
trol surfaces, engine failure, and other components that may result in abnormal flight
operating conditions. Monitoring and detection of such events are necessary to
achieve acceptable flight performance and higher flight survivability under abnormal
conditions. There are several techniques available for aircraft fault accommodation
problems [2-3, 11, 13] and for fault detection and isolation issues [6, 16]. This work
investigated an immunity-based approach that can detect a broad spectrum of known
and unforeseen faults. The goal is to apply the immunity-based fault detection algo-
rithm to improve the fault tolerance capabilities of the existing Intelligent Flight Con-
troller (IFC) architecture [11, 13].

Prior studies have established the benefits of intelligent flight control [2]. How-
ever, one area of weakness that needed be strengthened was the control dead band
induced by commanding a failed surface. Since the IFC approach uses fault accom-
modation with no detection, the dead band, although reduced over time due to learn-
ing, was present and caused degradation in handling qualities. This also makes it
challenging for outer loop control design. If the failure can be identified, this dead

band can further be minimized to ensure rapid fault accommodation and better han-
dling qualities [12, 13, 15].

2 Real-Valued Negative Selection (RNS) Algorithm

The negative selection algorithm [9] is based on the principles of self-nonself dis-
crimination in the immune system (Fig. 1 shows the concept of self and nonself
space). This negative selection algorithm can be summarized as follows (adopted
from [7]):

• Define self as a collection S of elements in a feature space U, a collection
that needs to be monitored. For instance, if U corresponds to the space of
states of a system represented by a list of features, S can represent the subset
of states that are considered as normal for the system.

• Generate a set F of detectors, each of which fails to match any string in S.
An approach that mimics the immune system generates random detectors
and discards those that match any element in the self set. However, a more
efficient approach [8] tries to minimize the number of generated detectors
while maximizing the covering of the nonself space.

• Monitor S for changes by continually matching the detectors in F against S.
If any detector ever matches, then a change is known to have occurred, as
the detectors are designed not to match any representative samples of S.

Figure 1. The figure illustrates the concept of self and nonself in a feature space. Here F1, F2,
etc. indicate different fault conditions represented by detectors.

The above description is very general and does not say anything about the repre-
sentation of the problem space and the type of matching rule is used. It is, however,
clear that the algorithmic complexity of generating good detectors can vary signifi-
cantly, which depends on the type of problem space (continuous, discrete, mixed,
etc.), detector representation scheme, and the rule that determines if a detector
matches an element or not. Most of the research works on the NS algorithm have
been restricted to the binary matching rules like r-contiguous [9]. The primary reason
for this choice is ease of use, and there exist efficient algorithms to generate detec-
tors, exploiting the simplicity of the binary representation and its matching rules [8].
However, the scalability issue has prevented it from being applied more extensively.

We adopted a real-valued NS (RNS) algorithm, which tries to alleviate the limita-

tions previously mentioned, while using the structure of the higher-level-
representation to speed up the detector generation process. The real-valued NS algo-
rithm applies a heuristic process that changes iteratively the position of the detectors
driven by two goals: to maximize the coverage of the nonself subspace and to mini-
mize the coverage of the self samples.

2.1 Details of the RNS Algorithm -- Detector Generation phase:

The RNS detector generation starts with a population of candidate detectors, which
are then matured through an iterative process. In particular, the center of each detector
is chosen at random and the radius is a variable parameter which determines the size
(in m-dimensional space) of the detector. The basic algorithmic steps of the RNS
detector generation algorithm are given in Fig. 2, and some computational details of
are illustrated in Figs. 3(a)-(d).

At each iteration, first, the radius of each candidate detector is calculated, and the
ones that fall inside self region are moved (i.e. its center is successively adjusted by
moving it away from training data and existing detectors). The set of nonself detec-
tors are then stored and ranked according to their size (radius). The detectors with
larger radii (and smaller overlap with other detectors) are considered as better-fit and
selected to go to the next generation. Detectors with very small radii, however, are
replaced by the clones of better-fit detectors. The clones of a selected detector are
moved at a fixed distance in order to produce new detectors in its close proximity.
Moreover, new areas of the nonself space are explored by introducing some random
detectors. The whole detector generation process terminates when a set of mature
(minimum overlapping) detectors are evolved which can provide significant coverage
of the nonself space.

Figure 2: Flow diagram showing the algorithmic steps for the real-valued negative

selection algorithm.

The purpose of the fault detection is to identify which states of a system are normal
(self) and which are faulty. The states of a system are represented by a set of control
variables which can exhibit the current and past system behavior. The actual values of
these variables are scaled or normalized in the range [0.0, 1.0] in order to define the
self-nonself space with a unit hypercube.

A detector is defined as d = (c, rd), where c= (c1, c2,…, cm) is an m-dimensional

point that corresponds to the center of a unit hypersphere with rd as its radius. The
following parameters are used for the detector generation process:

 rs: threshold value (allowable variation) of a self point; in other words, a point at a

distance greater than or equal to rs from a self sample is considered to be abnormal.

α: variable parameter to specify the movement of a detector away from a self sam-

ple or existing detectors.

ξ: maximum allowable overlap among the detectors, which implicates that allow-

ing some overlap among detectors can reduce holes in the nonself coverage.

2.1.1 Calculating the detector radius: We used the Minkowski distance to meas-

ure the distance (D) between two points x and y, which is defined as

λλ /1)||(),(∑ −= ii yxyxD

 where x= { x0, x1,… x N-1} and y = { y0,y1,… y N-1}. The Minkowski distance
with λ = 2 is equivalent to Euclidean Distance.

(a) Calculate detector radius (b) Moving a detector (c) Cloning a detector

Figure 3: Illustrate different computational steps used during the detector maturation process.
(a) Shows a way to calculate and update the radius of a detector (b) If a candidate detector
overlaps with an existing detector (or self points), then the candidate detector (i.e. its center, c)
is moved in the opposite direction to its nearest neighbor detector; (c) Given a mature detector,
a clone is created at a distance equal to its radius, and the direction where it is created is se-
lected at random.

This approach allows having variable size detectors to cover the nonself space. As

shown in Fig. 3(a), if the distance between a candidate detector, d = (c, rd) and its
nearest self point in the training dataset is D, then the detector radius is considered as
rd = (D - rs). However, if a detector is close to any edge of the hypercube and has a
large radius, then only a portion of it is inside the space, and such a detector is re-
ferred to as an edge detector. If the value rd = (D - rs) is negative then it falls inside
the self (radius); and this detector is expected to be discarded or moved in subsequent
iteration.

2.1.2 Moving detectors: Let d = (c, rd) represents a candidate detector and dnearest

= (cnearest, rd
 nearest) is its nearest detector (or a self point), then the center of d is moved

such that

dir

dir
cnewc α+= ,

 where dir = c - cnearest, and ||⋅|| denotes the norm of a m-dimensional vector (Fig.
3(b)). Accordingly, if a detector overlaps significantly with any other existing detec-
tors, then it is also moved away from its nearest neighbor detector. In order to guaran-
tee the convergence of this process, an exponential decay function is used for the
moving parameter (α).

2.1.3 Detector Cloning and Random Exploration: At every generation, a few bet-
ter-fitted detectors are chosen to be cloned. Specifically, let d = (cold, rd

 old) be a detec-
tor to be cloned and, say dclon = (cclon, rd

 clon), is a cloned detector whose center is lo-
cated at a distance rd

 old from d and whose radius is the same as that of the detector, d.
Accordingly, the center of dclon is computed as

dir

dir
old

d
r

old
cclonc +=

 dir = cold - cnearest (see Fig. 3(c)), and where cnearest is the center of d’s near-
est detector.

In addition, a few less-fit detectors are replaced by random detectors at each gen-

eration. This process allows the exploration of new regions of the nonself space,
which may need to be covered.

2.1.4 Evaluation of nonself detectors: Detectors which do not fall in the self re-

gion are sorted according to their size. A detector with large radius gets selected for
the next generation population, if it has small overlap with existing detectors i.e. less
than an overlapping threshold (ξ).

Accordingly, the overlapping measure W of a detector is computed as the sum of

its overlap with all other detectors as follows,

∑
′≠

′=
dd

ddwdW),,()(

where w(d, d’) is the measured overlap between two detectors d = (c, rd) and d’ =

(c, rd’); and is defined by ()mddw 1)exp(),(−=′ δ , m is the dimension of the
feature space,

and

 −′+
=

d

dd

r
Drr

2
δ

The value of δ is considered to be bounded between 0 and 1; and D is the distance
between two detector centers c and c’ as shown in Fig. 3(d). This overlapping meas-
ure seems to favor the detectors with bigger radii, i.e. detectors having larger cover-

age of the nonself space with minimum overlap among them. Accordingly, the closer
the center of two detectors is, the higher the value of the overlapping measure w (d,
d’).

2.2 Testing phase: Detection process

The detection process is straightforward -- the matured detectors are continually ex-
amined with new samples in test datasets. For example, the distance between a sam-
ple pattern, p = (cp, rs) and a detector, d = (c, rd) is computed as D (cp, c), where D
(cp, c) is the distance between the sample pattern and the detector calculated in the
same way as in the detector generation phase. If the distance, D < (rs + rd) then the
detector d gets activated indicating possible fault.

3. Fault Detection in Aircraft operation

 There are many applications where the aircraft behavior monitoring for indicating
flight subsystem fault/damage, detection of changes (in trends) in the operating con-
dition, etc. appears to be very useful [12]. We used a C-17 man-in-the-loop simula-
tion data for this study.

 An aircraft typically has many dedicated primary and secondary control surfaces
to maneuver the aircraft through space. In modern fly-by-wire aircraft, the pilot
commands angular rates of the aircraft using a side stick device. Speed and altitude
control is mostly achieved using auto pilot settings chosen by the pilot. The C-17

Figure 3(d): The overlap between two detectors d and d’ is computed in terms of the dis-
tance (D) between their centres (c, c’) and radii (rd, rd’).

aircraft, in addition to four engines, has a stabilizer, four elevators, two ailerons, eight
spoiler panels, four flap sections, and two rudders for control. In the figure shown
below, the pilot stick commands are shaped by a reference model to generate body-
axes roll, pitch, and yaw acceleration commands to the NASA Ames developed Intel-
ligent Flight Controller [11, 13]. The sensory feedback to the controller includes the
body-axes angular rates, airspeed, altitude, and angle-of-attack. An error vector,
computed using the difference between commanded and sensed body-axes angular
rates, is used to drive the intelligent flight controller. For this study, data generated
through piloted simulation studies using the C-17 simulator are used.

Figure 4: The block diagram showing the integration of immunity-based Fault detection sys-
tem and intelligent flight control (IFC) system.

We experimented with different detector generator schemes for real-valued nega-
tive selection algorithm for better detection of different faults. This fault detection
system takes real-valued data set as input; extracts the important semantic information
by applying data fusion and normalization techniques. The reduced information is
then represented as a collection of strings, which forms the self set (normal patterns)
that can be used to generate a diverse set of detectors. The set of detectors are subse-
quently used for detection of different type of faults (known and unknown faults).
The aim is to find a small number of specialized detectors (as signature of known
failure conditions) and a bigger set of generalized detectors for unknown (or possible)
fault conditions. The output of the fault detection system will be provided to IFC for
isolating the faulty control surface.

4. Experiments and Results

The data from the simulator is collected at the rate of 30 Hz per second. Since the
data is from man-in-the–loop simulation, there is an extra control (the human pilot)

that simply cannot be removed from the data. We considered three sets of in-flight
sensory information—namely, body-axes roll rate, pitch rate and yaw rate—to detect
five different simulated faults. The error rates are measured from the desired output
of the reference model and the actual sensed output (as shown in Fig. 4).

The training data set was created by taking all of the data until the moment of the

failure. For both cases, this is a different amount of time which varies between 2-3
seconds. The test data were generated by windowing the data 1.5 seconds before and
1.5 seconds after the failure. As a result, the "normal" part of the test data looks simi-
lar to the training data for each case. It is to be noted that some of the entries are zero
at the beginning of the data set, because the pilot has likely not entered a command to
maneuver by then, and the aircraft would still be flying straight and level.

4.1 Preprocessing Data:

First, data are normalized where the actual values of the variables are scaled or nor-
malized to fit a defined range [0.0, 1.0] using the maximum and minimum (+/- 20%
to normal data) value of each dimension in the data set. Any value above and below
the defined max and min is considered as 1 and 0, respectively. Data window shift—
shifts the data based on the window shifting and data overlapping parameters. In
these experiments, K-mean clustering is used to reduce the training dataset to im-
prove the time complexity of the detector generation process.

4.2 Detector generation phase:

The RNS algorithm takes as input a set of hyper-spherical detectors randomly distrib-
uted in the self/nonself space. The algorithm applies a heuristic process that changes
iteratively the position of the detectors driven by the objective to maximize the cover-
age of the nonself subspace and to minimize their overlap, while not covering the self
samples. The flow diagram for the proposed detector generation algorithm (RNS) is
given in previous section (Fig. 2).

The aim is to find a small number of specialized detectors (as signature of known

fault conditions) and other generalized detectors for unknown (or possible) fault con-
ditions.

4.3 Testing phase:

After generating the detectors, the next step is to examine the effectiveness of detec-
tors in identifying various faults. We used the same preprocessing steps and distance
measure during the testing phase as was used in generating detectors. If a detector
gets activated with current pattern, a change in the behavior pattern is known to have
occurred and an alarm signal is generated regarding the fault. In particular,

• For each fault condition: Combine all (or as many as possible) activated de-
tectors to form a small set of specialized fault detectors that can be labelled
with specific fault type.

• For rest of the detectors: Use clustering method to form different clusters

with cluster centre and radius of the cluster to be labelled as probable (or
possible) fault detectors

Some of the generalized detectors can be used for detecting simulated faults during

the testing phase, however, others may be considered as being useless and discarded.
It is expected that a limited number of detector generated by NSA (initially) may not
be sufficient to cover the entire space, so it may be necessary to change the number,
their distribution and resolution in nonself space to provide system and condition
specific fault detection capabilities.

4.4 Results:

The sensor parameters considered for these experiments include body-axes roll angle
rate, pitch rate and yaw rate, where both expected and observed values are monitored
and error rate (e) is calculated. If these error rates are abnormal, the NS fault detec-
tion algorithm should detect them indicating possible failures. The following graphs
illustrate results of experiments with different failure conditions.

Fig. 5 shows the error rate(e) for three sensory inputs that are considered as the

normal operating conditions, and used to generate the detector set. Fig. 6 illustrates
the performance of the detection system when tested with wing fault data, where this
type of fault is manifested in roll error rate (starting at 300 time step). The graph also
shows the number of detectors activated (upper bar chart) as significant deviations in
data patterns appear. Fig. 7 displays similar results for the tail failure. It is to be noted
that simulation data that have a full tail failure, show up first in the pitch axis as the
pitch axis has very little coupling with the roll and yaw axes.

 As this detector generation algorithm generates variably sized detectors to cover

spaces within and outside self regions, Fig. 8 gives the number of detectors with dif-
ferent sizes in a typical run. In this case, more number of detectors is generated with
radii ranging between 0.25-0.3. However, some of the detectors with larger radii are
edge detectors, partially covering the nonself space.

Table 1 gives the statistical results of 10 runs for two different faults—tail and

wing damage. Here the number of detector generated is 368; when tested on two
faulty data sets, the detection rates of 89% and 92% are observed with relatively
small false alarm rates.

Figure 5. Show error rates for three sen-
sory inputs (roll, pitch and yaw) that are
considered as the normal data pattern.

Figure 7: Test results indicating the detection of
Tail 1 failure.

Figure 6. Show the detection of a wing
failure with number of activated detectors.

Figure 8: Indicates different sized detectors that
are generated in a typical run.

 Table 1. Table shows some statistics of testing two different faults (tail and wing failure).

Performance
Detection date False alarm rate Type of

Faults Mean S.D. Mean S.D
Tail 89% 1.43 0.87% 0.45

Wing 92% 1.67 0.98% 0.32

 Fig. 9 shows the number of detectors activated for five different faults. We observed
that a good number of detectors get activated in each fault case. There appears to be
three possible reasons: first, because of allowing some overlap among detectors;
second, faulty data may be clustered at several locations in the nonself space, and
third, the same detectors may be activated for more than one fault cases. Fig. 10
shows different false alarm rates with the change in number of detectors. It indicates
that the false positive rate reduces as number of detectors increases; moreover, the
increase in false negative is insignificantly small (up to 1.4%) at the same time.

Figure 9: Average number of detectors
activated for each fault tested.

 Figure 10. Shows the false alarm rates
(both false positive and false negative) with
change in number of detectors.

5. Conclusions:

There exist many techniques for aircraft failure detection [2-3,5-6,13,15]. One of the
drawbacks of existing fault detection and isolation (FDI) based approaches is that
they cannot detect unexpected and unknown fault types. The immunity-based ap-
proaches have been used in many applications including fault detection [1, 4, 17, 19,
20], anomaly detection [14, 18], etc. We investigated a real-valued negative selection
algorithm that could detect a broad spectrum of known and unforeseen faults. In this
work, once the fault is detected and identified, a direct adaptive control system would
use this detection information to stabilize the aircraft by utilizing available resources
(control surfaces). The proposed intelligent fault detection algorithm is inspired by
the principles of the biological immune system. This fault detection algorithm is a
probabilistic approach (motivated by the negative selection mechanism of the im-
mune system) in order to detect deviations in aircraft flight behavior patterns. In par-
ticular, the detection system learns the knowledge of the normal flight patterns from
sensory data, to generate probabilistically a set of (novel) pattern detectors that can
detect any abnormalities (including faults) in the behavior pattern of the aircraft
flight.

In summary, the proposed method works as follows:

Based on the dataset (given) of normal operating conditions, generate a set of fault

detectors; the goal is, however, to evolve 'good' detectors that cover the nonself space.
• A 'good' detector:

o It must not cover self space.
o It has to be as general as possible: the larger the volume, the better.

• One detector may not be enough; instead, a set of detectors is required that
can collectively cover the nonself space with minimum overlap.

During the testing phase, we used the data collected during different fault condi-

tions:
• Detectors that get activated (match) for each fault are labeled as specific

fault detectors. These constitute a set of specialized detectors for identifying
different class of faults.

• It may be necessary to go through the detector optimization process: filter
out some overlapping detectors, and merge some and generating new ones
for better coverage.

Some faulty conditions can be simulated (by changing some crucial, monitored pa-

rameters) in order to check which generalized detectors get activated. These detectors
can also provide the knowledge of possible (unknown) faults. The goal is to achieve a
certain level of damage control under any known fault or unknown abnormalities.

The long-term goal is to use NSA to detect control surface area loss caused by

damage (or failure) and other causes that may result in the departure of the aircraft
from safe flight conditions. Once the failure is detected and identified, the Intelligent
Flight Controller (IFC) then utilizes all remaining source of control power necessary
to achieve the desired flight performance.

References

1. M. Araujo, J. Aguilar and H. Aponte. Fault detection system in gas lift well based on
Artificial Immune System. In the proceedings of the International Joint Conference on AI,
pp. 1673 -1677, No. 3, July 20 - 24, 2003.

2. Jovan D. Boskovic and Raman K. Mehra. Intelligent Adaptive Control of a Tailless Ad-
vanced Fighter Aircraft under Wing Damage. In Journal of Guidance, Control, and Dy-
namics (American Institute of Aeronautics and Astronautics), Volume: 23 Number: 5
Pages: 876-884, 2000

3. Jovan D. Boskovic and Raman K. Mehra. Multiple-Model Adaptive Flight Control Scheme
for Accommodation of Actuator Failures. In Journal of Guidance, Control, and Dynamics
(American Institute of Aeronautics and Astronautics), Volume: 25 Number: 4 Pages: 712-
724, 2002.

4. D. Bradley and A. Tyrrell. Hardware Fault Tolerance: An Immunological Solution. In the
proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC),
Nashville, October 8-11, 2000.

5. Joseph S. Brinker and Kevin A. Wise. Flight Testing of Reconfigurable Control Law on
the X-36 Tailless Aircraft. In Journal of Guidance, Control, and Dynamics (American In-
stitute of Aeronautics and Astronautics), Volume: 24, Number: 5 Pages: 903-909, 2001.

6. Y.M. Chen and M.L. Lee. Neural networks-based scheme for system failure detection and
diagnosis. In Mathematics and Computers in Simulation (Elsevier Science), Volume: 58
Number: 2 Pages: 101-109, 2002.

7. D. Dasgupta, S. Forrest. An anomaly detection algorithm inspired by the immune system.
In: Dasgupta D (eds) Artificial Immune Systems and Their Applications, Springer-Verlag,
pp.262–277, 1999.

8. P. D’haeseleer, S. Forrest, and P. Helman. An immunological approach to change detec-
tion: algorithms, analysis, and implications. In Proceedings of the IEEE Symposium on
Computer Security and Privacy, IEEE Computer Society Press, Los Alamitos, CA, pp.
110–119, 1996.

9. S Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination in a
computer. In Proc. of the IEEE Symposium on Research in Security and Privacy, IEEE
Computer Society Press, Los Alamitos, CA, pp. 202–212, 1994.

10. F. Gonzales and D. Dasgupta. Anomaly Detection Using Real-Valued Negative Selection.
In Genetic Programming and Evolvable Machines, 4, pp.383-403, 2003.

11. Karen Gundy-Burlet, K. Krishnakumar, Greg Limes and Don Bryant. Control Realloca-
tion Strategies for Damage Adaptation in Transport Class Aircraft. In AIAA 2003-5642,
August, 2003.

12. K. KrishnaKumar. Artificial Immune System Approaches for Aerospace Applications.
American Institute of Aeronautics and Astronautics 41st Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, 6-9 January 2003.

13. K. KrishnaKumar, G. Limes, K. Gundy-Burlet, D. Bryant. An Adaptive Critic Approach to
Reference Model Adaptation. In AIAA GN&C Conf. 2003.

14. F. Niño, D. Gómez, and R. Vejar. A Novel Immune Anomaly Detection Technique Based
on Negative Selection. In the proceedings of the Genetic and Evolutionary Computation
Conference (GECCO) [Poster], Chicago, IL, USA, LNCS 2723, p. 243, July 12-16, 2003.

15. Meir Pachter and Yih-Shiun Huang. Fault Tolerant Flight Control. In Journal of Guid-
ance, Control, and Dynamics (American Institute of Aeronautics and Astronautics), Vol-
ume: 26 Number: 1 Pages: 151-160, 2003.

16. Rolf T. Rysdyk and Anthony J. Calise, Fault Tolerant Flight Control via Adaptive Neural
Network Augmentation, AIAA 98-4483, August 1998.

17. Liu Shulin, Zhang Jiazhong, Shi Wengang, Huang Wenhu. Negative-selection algorithm
based approach for fault diagnosis of rotary machinery. In the Proceedings of American
Control Conference, 2002, Vol. 5, pp. 3955 -3960. 8-10 May 8-10, 2002.

18. S. Singh. Anomaly detection using negative selection based on the r-contiguous matching
rule. In 1st International Conference on Artificial Immune Systems (ICARIS), University
of Kent at Canterbury, UK, September 9-11, 2002.

19. Dan W Taylor and David W Corne. An Investigation of the Negative Selection Algorithm
for Fault Detection in Refrigeration Systems. In the Proceeding of Second International
Conference on Artificial Immune Systems (ICARIS), Napier University, Edinburgh, UK,
September 1-3, 2003.

20. S. Xanthakis, S. Karapoulios, R. Pajot and A. Rozz. Immune System and Fault Tolerant
Computing. In J.M. Alliot, editor, Artificial Evolution, volume 1063 of Lecture Notes in
Computer Science, pages 181-197. Springer-Verlag, 1996.

